SECA Core Technology ## Fossil Energy Fuel Cell Program Wayne Surdoval, SECA Coordinator June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy #### SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 #### Fuel H₂O + CO₂ H₂ + CO CO + H2O - H2 + CO2 Heat Permeable Anode Impermeable | Electrolyte O₂ + 4e⁻→ 2O⁼ Permeable Cathode Depleted O₂ Air Oxidant Heat Solid Oxide Fuel Cell ## **SECA Program Structure** **Industry Input** **Program Management** **Project Management** Research Topics **Industry Integration Teams** Needs Technology Transfer **Core Technology Program** ## **Core Technology Program Powering All Ships** - Materials - Modeling and simulation - Fuel processing - Power electronics - Controls and diagnostics - Manufacturing ## **Intellectual Property** Cornerstone of the Alliance Non-Exclusive License - CTP Industry Teams - Open for 1 year after issue of a U.S. patent - Ready market of potential licensees - Best designs vs. highest bidder - Dispute Resolution Mechanism - Promotes Collaboration Limits Duplication - Pilot program; reevaluate after 2 years ## Solid Oxide Fuel Cell #### The Vision: Fuel Cells in 2010 Low Cost/High Volume \$400/kW > 50,000 units/yr # **Different Approaches!** | Team | Design | Manufacturing | |--------------------------------|--|--| | Cummins-
SOFCo | Electrolyte supported 850 C Thermally matched materials Seal-less stack | Tape castingScreen printingCo-sintering | | Delphi-
Battelle | Anode supported 750 C Ultra compact Rapid transient capability | Tape castingScreen printing2-stage sintering | | General
Electric
Company | Anode supported 750 C Hybrid compatible Internal reforming | Tape calendering 2-stage sintering | | Siemens
Westinghouse | Cathode supported 800 C Redesigned tubular Seal-less stack | Stack extrusionPlasma spray | ## **Two New Different Approaches!** | Team | Design | Manufacturing | |----------------------------|--|---| | Acumentrics
Corporation | Anode supported microtube 750 C Thermally matched materials Robust & rapid start-up | ExtrusionDip processingSpray deposition | | FuelCell
Energy, Inc. | Anode supported< 700 CLow cost metals | Tape casting Screen printing Co-sintering Electrostatic deposition | ## **SOFC Materials Costs** | SOFC Component | Material Cost (\$/kW) | |--|-----------------------| | Common Materials (excluding interconnects) | | | Ni/ZrO ₂ anode (500 microns) | 11.67 | | ZrO ₂ /Y ₂ O ₃ electrolyte (10 microns) | 0.40 | | LaMnO ₃ cathode (50 microns) | 2.30 | | ss End Plates (1.25 centimeters) | 0.70 | | Subtotal Common Materials | 15.07 | | Ceramic Interconnect (2.5 millimeters) | 137.50 | | Subtotal Ceramic Interconnect & Common Materia | ls 152.57 | | 50% Contingency | 76.28 | | Total Material Costs Using Ceramic Interconnects | 228.85 | | Metallic Interconnect (2.5 millimeters) | 6.67 | | Subtotal Metallic Interconnect & Common Materia | | | 50% Contingency | 10.87 | | Total Material Costs Using Metallic Interconnects | 32.61 | ## **Current Priorities:** Core Technology Program | 1 | Gas seals | Glass and compressive seals | |---|---------------------------|---| | 1 | Interconnect | Modifying components in alloysCoatings | | 2 | Modeling | Models with electrochemistryStructural characterization | | 2 | Cathode performance | Micro structure optimizationMixed conductionInterface modification | | 2 | Anode/
fuel processing | Metal oxides with interface modification Catalyst surface modification Characterize thermodynamics/kinetics | | 3 | Power electronics | Direct DC to AC conversionDC to DC design for fuel cells | | 4 | Material cost | Lower cost precursor processingCost model methodology | ## **SECA Budget (\$M)** ## **Core Technology Program FY 2003** ## Stack Technology – Seals & Cross Cutting PNNL – Seals, Modeling and Analysis, Cathodes, Anodes, Interconnects, Fuel Processing LBNL – Metallic supported cell structure, Cathode **Current Flow** interface modification ANL – Metallic supported cell structure, Interconnects, **Fuel Processing** #### **Materials - Interconnects** #### Develop low temperature interconnect suitable for SOFC - U. of Pittsburgh - Ceramatec - Southwest Research Institute - PNNL - ANL ## **Modeling and Simulation** #### Structural, performance, and optimization design tools - PNNL - NETL - ORNL - U. of Florida - Georgia Tech - TIAX Image courtesy of NETL Image courtesy of PNNL Image courtesy of Delphi Image courtesy of Delphi #### **Materials - Cathodes** #### **Cathode performance – 2x improvement** - U. of Washington - U. of Missouri Rolla - U. of Utah - Functional Coating, LLC - Georgia Tech - PNNL Images courtesy of NexTech ## **Fuel Processing and Anode Tolerance** #### Carbon and sulfur resistant anodes - Northwestern - GTI #### Carbon and sulfur resistant reforming catalysts - LANL - ANL - NETL **Tubular cPox Reformer** Image courtesy of Delphi ## **Power Electronics / Controls & Diagnostics** # Interaction between fuel cell, power conditioning system and application loads U. of Illinois #### DC-DC / DC-AC converters - Texas A&M - Virginia Polytechnic Institute #### **High Temperature Sensors** NexTech Materials ## **Manufacturing** #### Low cost and consistent precursor materials - NexTech Materials - U. of Utah Image courtesy of Honeywell